齿轮泵,不锈钢齿轮泵,圆弧齿轮泵,高粘度转子泵,导热油泵,螺杆泵_泊头市诺一齿轮油泵厂
当前位置:返回首页 > 企业动态 > 行业信息 >
推荐产品

齿轮泵的基本部件与使用过程中的故障分析

2021-09-17 11:39:40
作者:诺一齿轮油泵

 

齿轮泵的基本部件是旋转的叶轮和固定的蜗牛形泵壳。具有若干个后弯叶片的叶轮紧固于泵轴上,并随泵轴由电机驱动作旋转。叶轮是直接对泵内液体做功的部件,为齿轮泵的供能装置。泵壳的吸入口与吸入管路相连接,吸入管路的底部装有单向底阀。
1、叶轮。叶轮是的作功部件,泵通过叶轮对液体作功。叶轮型式有闭式、开式、半开式三种。闭式叶轮由叶片、前盖板、后盖板组成。半开式叶轮由叶片和后盖板组成。开式叶轮只有叶片,无前后盖板。
2、导轮。为了减少离开叶轮的液体直接进入泵壳时因为冲击而引起的能量损失,在叶轮与泵壳之间有时装置一个固定不动而带有叶片的导轮。导轮中的叶片使进入泵壳的液体逐渐转向而且流道连续扩大,使部分动能地转换为静压能。蜗牛形的泵壳、叶轮上的后弯叶片及导轮均能提升动能向静压能的转化率。
3、轴封装置。由于泵轴转动而泵壳固定不动,在轴和泵壳的接触处有间隙。为避免泵内高压液体沿间隙漏出,设置轴封装置。齿轮泵的轴封装置有填料函和机械密封。填料函是将泵轴穿过泵壳的环隙作成密封圈,于其中装入软填料(如浸油或涂石墨的石棉绳等)。机械密封是由一个装在转轴上的动环和另一固定在泵壳上的静环所构成。
4、泵壳。泵壳有轴向剖分式和径向剖分式两种。大多数单级泵的壳体都是蜗壳式的,多级泵径向剖分壳体一般为环形壳体或圆形壳体。一般蜗壳式泵壳内腔早螺旋型,用以收集从叶轮中甩出的液体,并引向扩散管至泵出入口。
齿轮泵使用过程中出现的四大故障分析:
1、油封磨损,胶封老化
卸荷片的橡胶油封老化变质,失去弹性,对高压油腔和低压油腔失去了密封隔离作用,会产生高压油腔的油压往低压油腔,称为“内漏”,它降低了油泵的工作压力和流量。齿轮泵它的正常工作压力为100~110kg/平方厘米,正常输油量是46L/min,标准的卸荷片橡胶油封是57×43。自紧油封是PG25×42×10的骨架式油封,它的损坏或年久失效,空气便从油封与主轴轴颈之间的缝隙或从进油口接盘与油泵壳体结合处被吸入油泵,经回油管进入油箱,在油箱中产生大量气泡。会造成油箱中的油液减少,发动机油底槽中油液增多现象,使农具提升缓慢或不能提升。需要换油封才可排除此故障。
2、机油泵供油量不足或无油压现象:
工作装置提升缓慢,提升时发抖或不能提升;油箱或油管内有气泡;提升时液压系统发出“唧、唧”声音;拖拉机刚启动时工作装置能提升,工作一段时间油温升高后,则提升缓慢或不能提升;轻负荷时能提升,重负荷时不能提升。
3、油泵壳体的磨损
主要是浮动轴套孔的磨损(齿轮轴与轴套的正常间隙是0.09~0.175mm,大的不可以超过0.20mm)。齿轮工作受压力油的作用,齿轮尖部靠近油泵壳体,磨损泵体的低压腔部分。另一种磨损是壳体内工作面成圆周似的磨损,这种磨损主要是添加的油液不净所致,所以需要添加没有杂质的油液。
4、油泵内部零件磨损
齿轮泵内部零件磨损会造成内漏。其中浮动轴套与齿轮端面之间泄漏面积大,是造成内漏的主要部位。这部分漏损量占全部内漏的50%~70%左右。磨损内漏的齿轮泵其容积速率下降,油泵输出功率低于输入功率。其损耗全部转变为热能,因此会引起油泵过热。若将结合平面压紧,因工作时浮动轴套会有少量运动而造成磨损,结果使农具提升缓慢或不能提升,这样的浮动轴套需要换或修理。
齿轮泵泄漏的主要渠道是间隙(间隙是<0.1mm的缝隙),液压系统的泄漏主要有缝隙泄漏,多孔隙泄漏,粘附泄漏和动力泄漏等形式。
1、动力泄漏:
在传动轴的密封表面,若留有螺旋加工痕迹时,此类痕迹具有“泵油”作用。当轴传动时,液体在转轴回转力作用下,沿螺纹痕迹的凹槽流动。从外轴端观察,若螺纹方向与轴的转动方向一致时,就会产生泄漏。动力泄漏的特点是轴的转速越大,泄漏量越大,为了防止动力泄漏,应避免在旋转轴密封表面夹密封圈的唇边上存在“泵油”作用的加工痕迹,或者限制痕迹的方向。
2、缝隙泄漏:
在液压元件中,有可能漏油的表面,包括有相对运动的表面和固定连接的表面,在这些表面之间可能出现间隙,如果系统的这些间隙的一端为高压油,另一端为低压油或大气,高压油就会从缝隙中流向低压区而造成泄漏。缝隙泄漏是液压元件泄漏的主要形式,泄漏的大小与缝隙的两端压力差,液体粘度,缝隙的长度、宽度和高度等因素有关。由于泄漏量的大小与缝隙高度的三次方成正比,因此在结构和工艺允许的条件下,应尽可能减小缝隙高度。
3、多孔隙泄漏:
液压件的各种盖板,法兰结构,板式连接等,通常都采用紧固措施,当结合表面没有不平度误差,在相互理想平行平面的状态下紧固,在结合面之间不会在总体上形成缝隙。但是,由于表面粗糙度的影响。两表面不会接触。
4、粘附泄漏:
粘性液体与固体壁之间是有粘附性作用的,两者接触后,在固体表面上粘附着薄薄的一层液体,但粘附层较厚时,就会形成泄漏的液滴。
因此,两表面间不接触的微观凹陷处,形成许多截面形状多样,大小不等的孔隙,当结合面表面的粗糙度所造成的孔隙截面远比分子或者分子团的尺寸大时,液体在压力差作用下,可通过这些孔隙而泄漏。液体通过两结合面微观凹陷所造成的众多孔隙的泄漏是不可避免的。表面残留下来的加工痕迹与泄漏方向越是一致,泄漏阻力就越小,即泄漏量越大。铸造件的组织疏松,焊缝缺陷夹杂,密封材料的毛细管等产生的泄漏均属于多孔泄漏。多孔泄漏,液体流经弯弯曲曲的时而互通,时而不通的众多孔隙时,路程长,液阻大,流经时间长。所以,在做密封性能实验时,需经时间过程,才能显示出来。